1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
| #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<climits> #include<cstdlib> using namespace std; typedef long long ll; typedef unsigned long long ull; template <typename T> inline void read(T&x){ int w = 0;x = 0; char ch = getchar(); while(ch<'0' || ch>'9'){ if(ch=='-') w = 1; ch = getchar(); } while(ch>='0' && ch<='9'){ x = (x<<1)+(x<<3)+(ch^48); ch = getchar(); } if(w) x = ~x+1; } template <typename T,typename...Args> inline void read(T&t,Args&...args){ read(t);read(args...); } template <typename T> inline T Min(T x,T y){ return (x < y ? x : y); } template <typename T> inline T Max(T x,T y){ return (x > y ? x : y); } template <typename T> inline T Abs(T x){ return (x < 0 ? ~x+1 : x); } const int N = 210,M = 1e6+10; ll prime[4] = {3,5,6793,10007}; ll T,ans[N],P; int cnt; struct node{ ll x,y; inline int operator < (const node&G) const{ if(x^G.x) return x < G.x; return y < G.y; } }g[N]; ll mul[4][M],inv[4][M]; inline ll quick_pow(ll x,ll y,int t){ ll res = 1; while(y){ if(y&1) (res *= x)%=prime[t]; (x *= x)%=prime[t]; y >>= 1; } return res; } inline ll C(ll n,ll m,int t){ if(m>n) return 0; return mul[t][n]*inv[t][n-m]%prime[t]*inv[t][m]%prime[t]; } inline ll Lucas(ll n,ll m,int t){ if(!m) return 1; return C(n%prime[t],m%prime[t],t)*Lucas(n/prime[t],m/prime[t],t)%prime[t]; } inline ll Gcd(ll x,ll y){ if(!x || !y) return x|y; ll xz = __builtin_ctzll(x); ll yz = __builtin_ctzll(y); ll z = Min(xz,yz); ll diff; y >>= yz; while(x){ x >>= xz; diff = x-y; xz = __builtin_ctzll(diff); y = Min(x,y); x = Abs(diff); } return y << z; } inline void Exgcd(ll x,ll y,ll &Ex,ll &Ey){ if(!y){ Ex = 1; Ey = 0; return ; } Exgcd(y,x%y,Ey,Ex); Ey = Ey-x/y*Ex; } inline ll ExCRT(ll n,ll m){ ll r1 = Lucas(n,m,0); ll m1 = prime[0]; ll r2,m2,Ex,Ey; for(int t=1;t<=cnt;++t){ r2 = Lucas(n,m,t); m2 = prime[t]; ll d = Gcd(m1,m2); Exgcd(m1/d,m2/d,Ex,Ey);
Ex = ((r2-r1)/d*Ex%(m2/d)+(m2/d))%(m2/d); r1 = ((r1+m1*Ex)%(m1/d*m2)+(m1/d*m2))%(m1/d*m2); m1 = m1/d*m2; } return r1; } int main(){
ll n,m;read(n,m,T,P); for(int i=1;i<=T;++i) read(g[i].x,g[i].y); g[++T] = {n,m}; sort(g+1,g+1+T); if(P==1000003) prime[0] = 1000003,cnt = 0; else cnt = 3; for(int t=0;t<=cnt;++t){ mul[t][0] = 1; for(ll i=1;i<prime[t];++i) mul[t][i] = mul[t][i-1]*i%prime[t]; inv[t][prime[t]-1] = quick_pow(mul[t][prime[t]-1],prime[t]-2,t); for(ll i=prime[t]-1;i;--i) inv[t][i-1] = inv[t][i]*i%prime[t]; } for(int i=1;i<=T;++i){ ans[i] = ExCRT(g[i].x+g[i].y,g[i].x); for(int j=1;j<i;++j){ if(g[j].x<=g[i].x && g[j].y<=g[i].y){ ans[i] = (ans[i]-ans[j]*ExCRT(g[i].x+g[i].y-g[j].x-g[j].y,g[i].x-g[j].x)%P+P)%P; } } } printf("%lld",ans[T]);
fclose(stdin); fclose(stdout); return 0; }
|